Precise Structure Analysis by Neutron Diffraction for $\mathbf{R N b O}_{4}$ and Distortion of $\mathbf{N b O}_{4}$ Tetrahedra

By S. Tsunekawa
Institute for Materials Research, Tohoku University, Sendai 980, Japan
T. Kamiyama
Institute of Materials Science, University of Tsukuba, Tsukuba 305, Japan
K. Sasaki
Institute for Materials Research, Tohoku University, Sendai 980, Japan
H. Asano
Institute of Materials Science, University of Tsukuba, Tsukuba 305, Japan
and T. Fukuda
Institute for Materials Research, Tohoku University, Sendai 980, Japan

(Received 24 July 1992; accepted 9 December 1992)

Abstract

Precise crystal structure analysis by neutron powder diffraction is performed for rare-earth orthoniobates ($R \mathrm{NbO}_{4}: R=\mathrm{La}, \mathrm{Nd}$, Ho and Yb) and the distortion of NbO_{4} tetrahedra is estimated with the normalcoordinate method. Displacement of the cubic symmetry mode is large and increases with decreasing ionic radius of ${ }^{\text {VIII }} R^{3+}$. This displacement produces a regular tetrahedron of NbO_{4}. The mean value of $\mathrm{Nb}-\mathrm{O}$ distances in the regular tetrahedron of $R \mathrm{NbO}_{4}$ crystals is $1.834 \AA$. This value is nearly equal to the mean bond length for $s=5 / 4, \bar{R}=1.828 \AA$, estimated by the bond-valence method. Displacements of the other symmetry modes slightly decrease or are almost constant with decreasing ionic radius.

1. Introduction

There are several reports on the structural study of rare-earth orthoniobate (RNO_{4}) crystals by X-ray diffraction (Brixner, Whitney, Zumsteg \& Jones, 1977; Tsunekawa \& Takei, 1978; Mariathasan, Finger \& Hazen, 1985) and neutron diffraction (David, 1983; David, Hull \& Ibberson, 1990). The low-temperature symmetry was determined by convergent-beam electron diffraction and found to be space group $C 2 / c$ ($=I 2 / a=I 2 / c$) (Tanaka, Saito \& Watanabe, 1980).

The characteristic behavior of NbO_{4} tetrahedra in LaNbO_{4} has been studied by high-pressure X-ray diffraction (Mariathasan, Finger \& Hazen, 1985) and
neutron diffraction (David, Hull \& Ibberson, 1990). It was shown in terms of bond-valence concepts (Brown \& Wu, 1976) that the coordination number of Nb^{5+} ions tends to change from four to six as the ferroelastic transition temperature is approached from higher temperatures. The effect of hydrostatic pressure on the transition temperature was explained by the same tendency.
We have investigated pseudoelasticity (rubber-like behavior) in LaNbO_{4} and NdNbO_{4} crystals. It was suggested that the role of NbO_{4} tetrahedra, which have twofold symmetry (monoclinic deformation), is very important (Tsunekawa, Suezawa \& Takei, 1977).
In this paper we report the precise structure analysis by neutron powder diffraction of $R \mathrm{NbO}_{4}$ crystals ($R=\mathrm{La}, \mathrm{Nd}$, Ho and Yb) and describe the distortion of NbO_{4} tetrahedra with the normal-coordinate method.

2. Experimental

Powder samples were prepared by crushing and grinding single crystals grown by the Czochralski or floating-zone method. Neutron powder diffraction data were taken at room temperature using the highresolution TOF (time-of-flight) neutron powder diffractometer (HRP) $\left(\Delta d / d \approx 3 \times 10^{-3}\right)$ installed at the KENS pulsed-spallation neutron source at the National Laboratory for High Energy Physics (Watanabe, Asano, Iwasa, Satoh, Murata, Karahashi, Tomiyoshi, Izumi \& Inoue, 1987). These data were refined with a TOF neutron diffraction version of
the RIETAN program (Izumi, Asano, Murata \& Watanabe, 1987).

3. Results

All Rietveld refinement patterns of the HRP data for $R \mathrm{NbO}_{4}$ ($R=\mathrm{La}, \mathrm{Nd}$, Ho and Yb) show a good fit. An example is shown in Fig. 1. Final R factors, lattice constants and structural parameters with their standard deviations are listed in Table 1, where $R_{w p}$ became smaller than R_{e} for NdNbO_{4} and HoNbO_{4} because the fit is quite good and the background is relatively high. In Table 1, the temperature factor of Nb in HoNbO_{4} was assigned to be isotropic because U_{11} became slightly negative in an anisotropic assignment. Niobium-oxygen interatomic distances and angles calculated with the ORFFE program (Busing, Martin \& Levy, 1964) are given in Table 2.

4. Discussion

The NbO_{4} tetrahedra in $\mathrm{R}_{\mathrm{NbO}}^{4}$ crystals have monoclinic deformation. Such a deformation is decomposed into 12 normal modes (Kataoka, 1991) as shown in Fig. 2. The displacement of these modes, Q_{n}, is estimated by the normal-coordinate method, where the subscripts $n=1,2,3, \ldots, 11$ and 12 correspond to a cubic mode, an orthorhombic mode, a tetragonal mode, three monoclinic symmetry modes, three translational modes and three rotational modes, respectively.

$$
\begin{align*}
Q_{1}= & {\left[1 /(12)^{1 / 2}\right]\left[\left(q_{1 x}-q_{1 y}+q_{1 z}\right)+\left(-q_{2 x}+q_{2 y}+q_{2 z}\right)\right.} \\
& \left.+\left(q_{3 x}+q_{3 y}-q_{3 z}\right)-\left(q_{4 x}+q_{4 y}+q_{4 z}\right)\right] \tag{1a}
\end{align*}
$$

$$
\begin{align*}
Q_{2}= & \left(1 / 8^{1 / 2}\right)\left[\left(q_{1 x}+q_{1 y}\right)-\left(q_{2 x}+q_{2 y}\right)\right. \\
& \left.+\left(q_{3 x}-q_{3 y}\right)-\left(q_{4 x}-q_{4 y}\right)\right] \tag{1b}\\
Q_{3}= & (1 / 4)\left[\left(2 q_{1 z}-q_{1 x}+q_{1 y}\right)+\left(2 q_{2 z}+q_{2 x}-q_{2 y}\right)\right. \\
& \left.-\left(2 q_{3 z}+q_{3 x}+q_{3 y}\right)-\left(2 q_{4 z}-q_{4 x}-q_{4 y}\right)\right] \tag{1c}\\
Q_{4}= & \left(1 / 8^{1 / 2}\right)\left[\left(q_{1 y}-q_{1 z}\right)+\left(q_{2 y}+q_{2 z}\right)\right. \\
& \left.-\left(q_{3 y}-q_{3 z}\right)-\left(q_{4 y}+q_{4 z}\right)\right] \tag{1d}\\
Q_{5}= & \left(1 / 8^{1 / 2}\right)\left[\left(q_{1 x}+q_{1 z}\right)+\left(q_{2 x}-q_{2 z}\right)\right. \\
& \left.-\left(q_{3 x}-q_{3 z}\right)-\left(q_{4 x}+q_{4 z}\right)\right] \tag{le}\\
Q_{6}= & \left(1 / 8^{1 / 2}\right)\left[\left(-q_{1 x}+q_{1 y}\right)+\left(q_{2 x}-q_{2 y}\right)\right. \\
& \left.+\left(q_{3 x}+q_{3 y}\right)-\left(q_{4 x}+q_{4 y}\right)\right] \tag{1f}\\
Q_{7}= & (1 / 2)\left(q_{1 x}+q_{2 x}+q_{3 x}+q_{4 x}\right) \tag{1g}\\
Q_{8}= & (1 / 2)\left(q_{1 y}+q_{2 y}+q_{3 y}+q_{4 y}\right) \tag{1h}\\
Q_{9}= & (1 / 2)\left(q_{1 z}+q_{2 z}+q_{3 z}+q_{4 z}\right) \tag{1i}\\
Q_{10}= & \left(1 / 8^{1 / 2}\right)\left[-\left(q_{1 y}+q_{1 z}\right)-\left(q_{2 y}-q_{2 z}\right)\right. \\
& \left.+\left(q_{3 y}+q_{3 z}\right)+\left(q_{4 y}-q_{4 z}\right)\right] \tag{1j}\\
Q_{11}= & \left(1 / 8^{1 / 2}\right)\left[\left(q_{1 x}-q_{1 z}\right)+\left(q_{2 x}+q_{2 z}\right)\right. \\
& \left.-\left(q_{3 x}+q_{3 z}\right)-\left(q_{4 x}-q_{4 z}\right)\right] \tag{1k}\\
Q_{12}= & \left(1 / 8^{1 / 2}\right)\left[\left(q_{1 x}+q_{1 y}\right)-\left(q_{2 x}+q_{2 y}\right)\right. \\
& \left.-\left(q_{3 x}-q_{3 y}\right)+\left(q_{4 x}-q_{4 y}\right)\right] . \tag{1l}
\end{align*}
$$

Therefore, we can get the values of Q_{n}, substituting the values of $q_{i x}, q_{i y}$ and $q_{i z}(i=1,2,3$ and 4) that correspond to x, y and z coordinates of O atoms

Fig. 1. Rietveld refinement pattern of the HRP data for $\mathrm{HoNbO}_{4} . Q=2 \pi / d$, where d is the interplanar spacing, and $\Delta y_{i}=y_{i}(o)-y_{i}(c)$, where $y_{i}(o)$ is the observed intensity and $y_{i}(c)$ is the calculated intensity at a particular channel i.

Table 1. Structural parameters for $R \mathrm{NbO}_{4}(R=\mathrm{La}, \mathrm{Nd}, \mathrm{Ho}$ and Yb$)$ at room temperature

The R factors $R_{w p}$ and R_{p} are defined for all the data points in a profile with and without a weight. R_{I} and R_{F} are for the integrated Bragg intensity and the structure factor. R_{c} is an expected R factor. Lattice parameters in the brackets were obtained by Aldred (1984). g is the occupation factor.
(a) $\mathrm{LaNbO}_{4}(I 2 / a=I 2 / c), R_{w p}=4.45, R_{p}=3.42, R_{e}=3.72, R_{I}=3.01, R_{F}=1.63 \% ; a=5.5647(1), b=11.5194(2), c=5.2015(1) \AA, \beta=94.100(1)^{\circ}[a=$ 5.5667 (2), $b=11.5245$ (4), $c=5.2020$ (3) $\AA, \beta=94.084$ (2) ${ }^{\circ}$]

Atom	Site	g	x	y	z	$U_{11}\left(\AA^{2}\right)$	$U_{22}\left(\AA^{2}\right)$	$U_{33}\left(\AA^{2}\right)$	$U_{12}\left(\AA^{2}\right)$	$U_{13}\left(\AA^{2}\right)$	$U_{23}\left(\AA^{2}\right)$
La	$4(e)$	1	0	$0.6292(1)$	$1 / 4$	$0.0052(5)$	$0.0007(5)$	$0.0058(5)$	0	$0.0028(4)$	0
Nb	$4(e)$	1	0	$0.1036(1)$	$1 / 4$	$0.0018(6)$	$0.0024(6)$	$0.0049(7)$	0	0.30	$0.005(5)$
$\mathrm{O}(1)$	$8(f)$	1	$0.2376(2)$	$0.0337(1)$	$0.0546(2)$	$0.0080(6)$	$0.0042(5)$	$0.0109(7)$	$0.0007(5)$	$0.0059(5)$	$0.0011(5)$
$\mathrm{O}(2)$	$8(f)$	1	$0.1460(2)$	$0.2042(1)$	$0.4888(2)$	$0.0063(6)$	$0.0043(5)$	$0.0066(6)$	$0.0005(5)$	$-0.0008(4)$	$-0.0024(5)$

(b) $\mathrm{NdNbO}_{4}(I 2 / a=I 2 / c), R_{w p}=3.18, R_{p}=2.49, R_{e}=3.32, R_{i}=2.50, R_{F}=1.42 \% ; a=5.4669(1), b=11.2789(2), c=5.1463(1) \AA, \beta=94.503(1)^{\circ}[a=$ 5.4687 (3), $b=11.2811$ (5), $c=5.1466$ (3) $\mathrm{A}, \beta=94.528$ (4) ${ }^{\circ}$]

Atom	Site	g	x	y	z	$U_{11}\left(\AA^{2}\right)$	$U_{22}\left(\AA^{2}\right)$	$U_{33}\left(\AA^{2}\right)$	$U_{12}\left(\AA^{2}\right)$	$U_{13}\left(\AA^{2}\right)$	$U_{23}\left(\AA^{2}\right)$
Nd	$4(e)$	1	0	$0.6296(1)$	$1 / 4$	$0.0032(3)$	$0.0037(4)$	$0.0032(3)$	0	$0.0015(2)$	0
Nb	$4(e)$	1	0	$0.1040(1)$	$1 / 4$	$0.0024(4)$	$0.0051(4)$	$0.0037(4)$	0	$0.0008(3)$	0
$\mathrm{O}(1)$	$8(f)$	1	$0.2399(2)$	$0.0327(1)$	$0.0467(2)$	$0.0068(4)$	$0.0065(4)$	$0.0077(4)$	$0.0011(3)$	$0.0035(3)$	$0.0017(3)$
$\mathrm{O}(2)$	$8(f)$	1	$0.1508(2)$	$0.2065(1)$	$0.4907(2)$	$0.0053(4)$	$0.0076(4)$	$0.0056(4)$	$0.0003(3)$	$-0.0009(3)$	$-0.0032(3)$

(c) $\mathrm{HoNbO}_{4}(I 2 / a=I 2 / c), R_{w p}=3.06, R_{p}=2.42, R_{p}=3.18, R_{t}=2.71, R_{F}=1.19 \% ; a=5.2985(1), b=10.9465(2), c=5.0719(1) \AA, \beta=94.531(1)^{\circ}[a=$ 5.3030 (2), $b=10.9555$ (3), $c=5.0742$ (2), $\beta=94.548$ (3) ${ }^{\circ}$]

Atom	Site	g	x	y	z	$U_{11}\left(\AA^{2}\right)$	$U_{22}\left(\AA^{2}\right)$	$U_{33}\left(\AA^{2}\right)$	$U_{12}\left(\AA^{2}\right)$	$U_{13}\left(\AA^{2}\right)$	$U_{23}\left(\AA^{2}\right)$	$B_{\text {eq }}\left(\AA^{2}\right)$
Ho	4(e)	1	0	0.6288 (1)	1/4	0.0030 (4)	0.0009 (3)	0.0033 (3)	0	0.0016 (2)	0	0.19
Nb	4(e)	1	0	0.1061 (1)	1/4							0.12 (2)
$\mathrm{O}(1)$	8(f)	1	0.2458 (2)	0.0324 (1)	0.0415 (2)	0.0057 (4)	0.0038 (4)	0.0049 (4)	0.0010 (3)	0.0017 (3)	0.0005 (3)	0.38
O(2)	8(f)	1	0.1566 (2)	0.2100 (1)	0.4971 (2)	0.0035 (4)	0.0039 (4)	0.0055 (4)	0.0005 (3)	-0.0015 (3)	-0.0018 (3)	0.34

(d) $\mathrm{YbNbO}_{4}(I 2 / a=I 2 / c), R_{w p}=4.04, R_{p}=3.15, R_{e}=3.18, R_{I}=3.25, R_{F}=1.37 \% ; a=5.2394(1), b=10.8344(2), c=5.0436(1) \AA, \beta=94.467(1)^{\circ}[a=$ 5.2429 (3), $b=10.843$ (1), $c=5.0456$ (3), $\beta=94.496$ (7) $\left.{ }^{\circ}\right]$

Atom	Site	g	\boldsymbol{x}	y	z	$U_{11}\left(\AA^{2}\right)$	$U_{22}\left(\AA^{2}\right)$	$U_{33}\left(\AA^{2}\right)$	$U_{12}\left(\AA^{2}\right)$	$U_{13}\left(\AA^{2}\right)$	$U_{23}\left(\AA^{2}\right)$	$B_{\text {eq }}\left(\AA^{2}\right)$
Yb	4(e)	1	0	0.6286 (1)	1/4	0.0015 (5)	0.0015 (4)	0.0031 (5)	0	0.0016 (4)	0	0.16
Nb	4(e)	1	0	0.1067 (2)	1/4	0.0013 (8)	0.0028 (8)	0.0011 (8)	0	0.0004 (6)	0	0.13
O(1)	$8(f)$	1	0.2473 (4)	0.0321 (2)	0.0401 (3)	0.0051 (6)	0.0041 (7)	0.0071 (8)	0.0016 (6)	0.0037 (6)	0.0015 (5)	0.42
O(2)	$8(f)$	1	0.1583 (3)	0.2106 (2)	0.4997 (3)	0.0032 (6)	$0.0036(7)$	0.0054 (7)	0.0007 (5)	-0.0002 (5)	-0.0022 (5)	0.32

$\mathrm{O}(3), \mathrm{O}(1), \mathrm{O}(4)$ and $\mathrm{O}(2)$ into ($1 a$) to ($1 /$), where it is noted that the position of the Nb atom is taken as the origin and the coordinate system is not oblique but orthogonal, different from those in Table 1. We obtain:

$$
\begin{align*}
Q_{1, \mathrm{La}} & =3.6575(2), & & Q_{1, \mathrm{Nd}}=3.6714(1) \tag{2a}\\
Q_{1, \mathrm{Ho}} & =3.6744(2), & & Q_{1, \mathrm{Yb}}=3.6691(3) \\
Q_{2 . \mathrm{La}} & =-0.0950(2), & & Q_{2, \mathrm{Nd}}=-0.1111(1) \\
Q_{2, \mathrm{Ho}} & =-0.1322(2), & & Q_{2, \mathrm{Yb}}=-0.1429(3) \tag{2b}\\
Q_{3, \mathrm{La}} & =-0.2215(2), & & Q_{3, \mathrm{Nd}}=-0.2391(1) \tag{2c}\\
Q_{3 . \mathrm{Ho}} & =-0.2658(2), & & Q_{3, \mathrm{Yb}}=-0.2767(3) \\
Q_{4} & =0 & & \tag{2d}\\
Q_{5} & =0 & & \tag{2e}\\
Q_{6, \mathrm{La}} & =-0.3155(2), & & Q_{6, \mathrm{Nd}}=-0.3356(1) \\
Q_{6 . \mathrm{Ho}} & =-0.3254(2), & & Q_{6, \mathrm{Yb}}=-0.3163(3) \\
Q_{7} & =0 & & \tag{2g}
\end{align*}
$$

(2f) YbNbO 。

Table 2. Bond lengths and angles of $R \mathrm{NbO}_{4}(R=\mathrm{La}$, Nd , Ho and Yb), where the angles $\mathrm{O}(2)-\mathrm{Nb}-\mathrm{O}(3)$ and $\mathrm{O}(3)-\mathrm{Nb}-\mathrm{O}(4)$ are equal to $\mathrm{O}(1)-\mathrm{Nb}-\mathrm{O}(4)$ and $\mathrm{O}(1)-$ $\mathrm{Nb}-\mathrm{O}(2)$, respectively, owing to twofold symmetry of the NbO_{4} tetrahedron

The notation $\mathrm{O}(1)-\mathrm{Nb}-\mathrm{O}(3)$ etc. is taken from Tsunekawa \& Takei (1978).

	(1978)			
	$A-B-C$	$A-B(\AA)$	$B-C(\AA)$	$A-B-C\left({ }^{\circ}\right)$
LaNbO_{4}	$\mathrm{O}(1)-\mathrm{Nb}-\mathrm{O}(3)$	$1.903(1)$	$1.903(1)$	$129.9(1)$
	$\mathrm{O}(2)-\mathrm{Nb}-\mathrm{O}(4)$	$1.844(1)$	$1.844(1)$	$102.2(1)$
	$\mathrm{O}(1)-\mathrm{Nb}-\mathrm{O}(4)$	$1.903(1)$	$1.844(1)$	$109.65(6)$
	$\mathrm{O}(1)-\mathrm{Nb}-\mathrm{O}(2)$	$1.903(1)$	$1.844(1)$	$101.28(6)$
NdNbO_{4}	$\mathrm{O}(1)-\mathrm{Nb}-\mathrm{O}(3)$	$1.918(1)$	$1.918(1)$	$130.36(7)$
	$\mathrm{O}(2)-\mathrm{Nb}-\mathrm{O}(4)$	$1.842(1)$	$1.842(1)$	$102.22(7)$
	$\mathrm{O}(1)-\mathrm{Nb}-\mathrm{O}(4)$	$1.918(1)$	$1.842(1)$	$109.96(7)$
	$\mathrm{O}(1)-\mathrm{Nb}-\mathrm{O}(2)$	$1.918(1)$	$1.842(1)$.	$100.71(4)$
HoNbO_{4}	$\mathrm{O}(1)-\mathrm{Nb}-\mathrm{O}(3)$	$1.919(1)$	$1.919(1)$	$130.31(8)$
	$\mathrm{O}(2)-\mathrm{Nb}-\mathrm{O}(4)$	$1.841(1)$	$1.841(1)$	$103.65(8)$
	$\mathrm{O}(1)-\mathrm{Nb}-\mathrm{O}(4)$	$1.919(1)$	$1.841(1)$	$110.23(4)$
	$\mathrm{O}(1)-\mathrm{Nb}-\mathrm{O}(2)$	$1.919(1)$	$1.841(1)$	$99.99(4)$
YbNbO_{4}	$\mathrm{O}(1)-\mathrm{Nb}-\mathrm{O}(3)$	$1.915(2)$	$1.915(2)$	$130.1(1)$
	$\mathrm{O}(2)-\mathrm{Nb}-\mathrm{O}(4)$	$1.838(2)$	$1.838(2)$	$104.5(1)$
	$\mathrm{O}(1)-\mathrm{Nb}-\mathrm{O}(4)$	$1.915(2)$	$1.838(2)$	$110.42(8)$
	$\mathrm{O}(1)-\mathrm{Nb}-\mathrm{O}(2)$	$1.915(2)$	$1.838(2)$	$99.67(7)$

$$
\begin{array}{rlrl}
Q_{8} & =0 & & \\
Q_{9, \mathrm{La}} & =-0.3524(2), & Q_{9, \mathrm{Nd}}=-0.3519(2) \\
Q_{9, \mathrm{Ho}} & =-0.3316(2), & & Q_{9, \mathrm{Yb}}=-0.3175(3) \\
Q_{10} & =0 & & \\
Q_{11} & =0 & & \\
Q_{12, \mathrm{La}} & =0.6336(2), & & Q_{12, \mathrm{Nd}}=0.6070(1) \\
Q_{12, \mathrm{Ho}} & =0.6016(2), & Q_{12, \mathrm{Yb}}=0.5986(3) \tag{2l}
\end{array}
$$

where $Q_{n, \mathrm{La}}$ is the displacement, in \AA, of nth normal mode for LaNbO_{4} crystals, and so on.
The displacement Q_{1} produces a regular tetrahedron of NbO_{4}. Four sets of orthogonal coordinates, $q_{i x}^{0}, q_{i y}^{0}$ and $q_{i z}^{0}(i=1,2,3$ and 4$)$, brought about by
only one mode of Q_{1}, are estimated using an inverse transformation matrix:

$$
\begin{gather*}
q_{1 x}^{0}=Q_{1} /(12)^{1 / 2}, \quad q_{1 y}^{0}=-Q_{1} /(12)^{1 / 2} \quad \text { and } \tag{3a}\\
q_{12}^{0}=Q_{1} /(12)^{1 / 2} ; \\
q_{2 x}^{0}=-Q_{1} /(12)^{1 / 2}, \quad q_{2 y}^{0}=Q_{1} /(12)^{1 / 2} \text { and } \tag{3b}\\
q_{2 z}^{0}=Q_{1} /(12)^{1 / 2} ; \\
q_{3 x}^{0}=Q_{1} /(12)^{1 / 2}, \quad q_{3 y}^{0}=Q_{1} /(12)^{1 / 2} \text { and } \tag{3c}\\
q_{32}^{0}=-Q_{1} /(12)^{1 / 2} ;
\end{gather*}
$$

$$
\begin{equation*}
q_{4 x}^{0}=-Q_{1} /(12)^{1 / 2}, \quad q_{4 y}^{0}=-Q_{1} /(12)^{1 / 2} \quad \text { and } \tag{3d}
\end{equation*}
$$

$$
q_{4 z}^{0}=-Q_{1} /(12)^{1 / 2} .
$$

Fig. 2. Twelve normal modes for a distorted NbO_{4} tetrahedron: one mode of (a) cubic, (b) orthorhombic and (c) tetragonal symmetries; (d) to (f) three modes of monoclinic symmetry; (g) to (i) three translational modes; and (j) to (l) three rotational modes. The displacements of these modes, Q_{n}, are shown by solid arrows. Open circles are O atoms and filled circles are Nb atoms.

These four sets correspond to the positions of four O atoms in the regular tetrahedron. Thus, the virtual bond length of $\mathrm{Nb}-\mathrm{O}, \ell_{0}$, is given by

$$
\begin{align*}
\ell_{0}= & \left\{\left[Q_{1} /(12)^{1 / 2}\right]^{2}+\left[-Q_{1} /(12)^{1 / 2}\right]^{2}\right. \\
& \left.+\left[Q_{1} /(12)^{1 / 2}\right]^{2}\right\}^{1 / 2}=Q_{1} / 2 . \tag{4}
\end{align*}
$$

The mean value of Q_{1} is $3.668 \AA$, from ($2 a$), and so the average value of ℓ_{0} is $1.834 \AA$. This value is nearly equal to the mean bond length $\bar{R}=1.828 \AA$ for s ($=$ valence of $\mathrm{Nb} /$ coordination number of Nb) $=5 / 4$, where s was called the electrostatic bond strength by Pauling (1929) and the bond valence by Brown (1978), $\bar{R}=R_{0}-0.37 \ln S$ and $R_{0}=1.911 \AA$ (Brown \& Altermatt, 1985).

We can estimate a rate of displacement for each normal mode (a kind of distortion) by the following

Fig. 3. Relation between the ionic radius of the rare-earth element (Shannon, 1976) and both the rate of displacement of each mode, ε_{n}, and $V^{1 / 3}$, where $n=1(\bullet), n=2(\times), n=3(+), n=6(\bigcirc)$, $n=9(\Delta), n=12(\square)$ and V is the unit-cell volume (\triangle).
equation:

$$
\begin{equation*}
\varepsilon_{n}=Q_{n} / V^{1 / 3} \tag{5}
\end{equation*}
$$

where $V=a b c \sin \beta$ is the monoclinic unit-cell volume of RNbO_{4} and $n=1,2,3,6,9$ and 12. Substituting each displacement value into (5), we get the results as shown in Fig. 3. It is noted that the rate of Q_{1} displacement, ε_{1}, increases with decreasing ionic radius of ${ }^{\text {VIII }} R^{3+}$. On the other hand, the rates of displacement of other symmetry modes slightly decrease or are almost constant with decreasing ionic radius. The variations in the rates of these displacements towards lower temperatures for pseudoelasticity are considered to be important.

5. Concluding remarks

Our results are summarized as follows:
(1) Precise crystal data for $R \mathrm{NbO}_{4}(R=\mathrm{La}, \mathrm{Nd}$, Ho and Yb) at room temperature were obtained by the high-resolution TOF neutron powder diffraction method.
(2) It was shown with the normal-coordinate method that the virtual bond length of the regular tetrahedron NbO_{4} in $R \mathrm{NbO}_{4}$ crystals is $1.834 \AA$ on average, which is nearly equal to the mean bond length for an ideal bond valence of $s=5 / 4$.
(3) The rate of displacement of each normal mode to cube root of the unit-cell volume was estimated. The relations between those rates and the ionic radii of rare-earth elements were obtained at room temperature.

We express our thanks to Professor Y. Yamaguchi and Dr M. Kataoka of the Institute for Materials Research of Tohoku University for useful discussions.

References

Aldred, A. T. (1984). Acta Cryst. B40, 569-574.
Brixner, L. H., Whitney, J. F., Zumsteg, F. C. \& Jones, G. A. (1977). Mater. Res. Bull. 12, 17-24.

Brown, I. D. (1978). Chem. Soc. Rev. 7, 359-376.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Brown, I. D. \& WU, K. K. (1976). Acta Cryst. B32, 1957-1959.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). Report ORNL-TM-306. Oak Ridge National Laboratory, Tennessee, USA.
David, W. I. F. (1983). Mater. Res. Bull. 18, 749-756.
David, W. I. F., Hull, S. \& Ibberson, R. M. (1990). Report RAL-90-024, pp. 1-12. Rutherford Appleton Laboratory, Oxfordshire, England.
Izumi, F., Asano, H., Murata, H. \& Watanabe, N. (1987). J. Appl. Cryst. 20, 411-418.

KATAOKA, M. (1991). Private communication.
Mariathasan, J. W. E., Finger, L. W. \& Hazen, R. M. (1985). Acta Cryst. B41, 179-184.
Pauling, L. (1929). J. Am. Chem. Soc. 51, 1010-1026.

Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Tanaka, M., Saito, R. \& Watanabe, D. (1980). Acta Cryst. A36, 350-352.
Tsunekawa, S., Suezawa, M. \& Takei, H. (1977). Phys. Status Solidi A, 40, 437-446.

Tsunekawa, S. \& Takei, H. (1978). Phys. Status Solidi A, 50, 695-702.
watanabe, N., Asano, h., Iwasa, H., Satoh, S., Murata, h., Karahashi, K., Tomiyoshi, S., Izumi, F. \& Inoue, K. (1987). Jpn. J. Appl. Phys. 26, 1164-1169.

Phase Determination of X-ray Reflections in a Quasicrystal

By H. Lee and R. Colella
Purdue University, Physics Department, West Lafayette, Indiana 47907, USA
and L. D. Chapman
Brookhaven National Laboratory, National Synchrotron Light Source, Upton, New York 11973, USA

(Received 10 June 1992; accepted 15 December 1992)

Abstract

Multiple Bragg diffraction effects have been observed in an $\mathrm{Al}-\mathrm{Cu}-\mathrm{Fe}$ quasicrystal. The experimental data are analyzed by means of a multibeam perturbation theory. Good fits are obtained between experimental and calculated profiles. The feasibility for phase determination of structure factors is demonstrated. It is found that there is no inversion symmetry in $\mathrm{Al}-\mathrm{Cu}-\mathrm{Fe}$.

1. Introduction

It has been shown recently that multiple Bragg scattering can be used for phase determination of X-ray structure factors (Shen \& Colella, 1987). The general idea is to monitor the intensity of a weak reflection as the crystal is rotated around the scattering vector. When a strong reflection is excited simultaneously, the diffracted intensity exhibits a peak as a function of ψ, the azimuthal angle of rotation, with asymmetric side bands. It has been pointed out (Chapman, Yoder \& Colella, 1981) that phase information can be obtained from the asymmetric side bands using n-beam dynamical theory, even when dealing with mosaic crystals of general shape (Shen \& Colella, 1987).

A general review of multibeam literature was published a few years ago (Chang, 1987) and recently phase effects have been observed in protein crystals (Hümmer, Schwegle \& Weckert, 1991; Chang, King, Huang \& Gao, 1991).

In this paper we report the observation of multiplediffraction (Renninger) effects in a quasicrystal. Since a quasicrystal does not possess long-range periodicity in the usual sense, it is not clear that all diffraction
features present in ordinary crystals should be visible in quasicrystals. However, we know that strong and sharp Bragg diffraction spots are produced by quasicrystals. We also know how to predict the positions of nodes in reciprocal space.* A necessary condition for the existence of the Renninger effect is that the difference between the Miller indices of two Bragg reflections must also correspond to a Bragg reflection. Since the $x y z$ coordinates of every node in reciprocal space are expressed by means of a linear combination of six Miller indices, the necessary condition mentioned above is certainly satisfied in a quasicrystal.

2. Experimental

Since multiple-beam effects are more visible for weak reflections, we decided to concentrate on the reflection $2 \overline{4} 044 \overline{2}=P$, which was chosen on the basis of a precession photograph taken perpendicularly to the fivefold axis. Bragg nodes in reciprocal space are referred to three orthogonal x, y, z axes, coinciding with the three twofold axes of the icosahedron. The x, y, z coordinates of a reciprocal-lattice vector, whose Miller indices are $n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}$, are given in this paper by

$$
\begin{equation*}
\mathbf{G}_{\|}=K \sum_{i=1}^{6} n_{i} \mathbf{e}_{\|}^{i}, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
K=1 /\left[2 \pi a\left(1+\tau^{2}\right)^{1 / 2}\right], \quad \tau=\frac{\left(1+5^{1 / 2}\right)}{2} \tag{2}
\end{equation*}
$$

[^0]
[^0]: * In this work we label Bragg spots with the sixfold Miller indices notation due to Elser (1986).

