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Abstract 

Precise crystal structure analysis by neutron powder 
diffraction is performed for rare-earth orthoniobates 
(RNbO4: R = La, Nd, Ho and Yb) and the distortion 
of NbO4 tetrahedra is estimated with the normal- 
coordinate method. Displacement of the cubic sym- 
metry mode is large and increases with decreasing 
ionic radius of vIIIR3+. This displacement produces 
a regular tetrahedron of NbO4. The mean value 
of Nb-O distances in the regular tetrahedron of 
RNbO4 crystals is 1.834 A. This value is nearly equal 
to the mean bond length for s=5/4, R=  1.828 A, 
estimated by the bond-valence method. Dis- 
placements of the other symmetry modes slightly 
decrease or are almost constant with decreasing ionic 
radius. 

1. Introduction 
There are several reports on the structural study of 
rare-earth orthoniobate (RNbO4) crystals by X-ray 
diffraction (Brixner, Whitney, Zumsteg & Jones, 
1977; Tsunekawa & Takei, 1978; Mariathasan, Finger 
& Hazen, 1985) and neutron diffraction (David, 1983; 
David, Hull & Ibberson, 1990). The low-temperature 
symmetry was determined by convergent-beam elec- 
tron diffraction and found to be space group 
C2/c (=I2/a=I2/c) (Tanaka, Saito & Watanabe, 
1980). 

The characteristic behavior of NbO4 tetrahedra in 
LaNbO4 has been studied by high-pressure X-ray 
diffraction (Mariathasan, Finger & Hazen, 1985) and 
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neutron diffraction (David, Hull & Ibberson, 1990). 
It was shown in terms of bond-valence concepts 
(Brown & Wu, 1976) that the coordination number 
of Nb 5+ ions tends to change from four to six as the 
ferroelastic transition temperature is approached 
from higher temperatures. The effect of hydrostatic 
pressure on the transition temperature was explained 
by the same tendency. 

We have investigated pseudoelasticity (rubber-like 
behavior) in LaNbO4 and NdNbO4 crystals. It was 
suggested that the role of NbO4 tetrahedra, which 
have twofold symmetry (monoclinic deformation), is 
very important (Tsunekawa, Suezawa & Takei, 1977). 

In this paper we report the precise structure analysis 
by neutron powder diffraction of R NbO4 crystals 
(R -- La, Nd, Ho and Yb) and describe the distortion 
of NbO4 tetrahedra with the normal-coordinate 
method. 

2. Experimental 
Powder samples were prepared by crushing and 
grinding single crystals grown by the Czochralski or 
floating-zone method. Neutron powder diffraction 
data were taken at room temperature using the high- 
resolution TOF (time-of-flight) neutron powder 
diffractometer (HRP) (Ad/d=3x 10 -3) installed at 
the KENS pulsed-spallation neutron source at the 
National Laboratory for High Energy Physics 
(Watanabe, Asano, Iwasa, Satoh, Murata, Karahashi, 
Tomiyoshi, Izumi & Inoue, 1987). These data were 
refined with a TOF neutron diffraction version of 
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the R I E T A N  program (Izumi, Asano, Murata & 
Watanabe, 1987). 

3. Results 

All Rietveld refinement patterns of the HRP data for 
RNbO4 (R = La, Nd, Ho and Yb) show a good fit. 
An example is shown in Fig. 1. Final R factors, lattice 
constants and structural parameters with their stan- 
dard deviations are listed in Table 1, where Rwp 
became smaller than R e for NdNb04 and HoNb04 
because the fit is quite good and the background is 
relatively high. In Table 1, the temperature factor 
of Nb in HoNb04 was assigned to be isotropic 
because U~ became slightly negative in an 
anisotropic assignment. Niobium-oxygen inter- 
atomic distances and angles calculated with the 
O R F F E  program (Busing, Martin & Levy, 1964) are 
given in Table 2. 

4. Discussion 

The NbO4 tetrahedra in RNbO4 crystals have mono- 
clinic deformation. Such a deformation is decom- 
posed into 12 normal modes (Kataoka, 1991) as 
shown in Fig. 2. The displacement of these modes, 
Q,, is estimated by the normal-coordinate method, 
where the subscripts n = 1, 2, 3 , . . . ,  11 and 12 corre- 
spond to a cubic mode, an orthorhombic mode, a 
tetragonal mode, three monoclinic symmetry modes, 
three translational modes and three rotational modes, 
respectively. 

Q~ =[ 1/(12)v2][(q~x - q~y + qlz) + ( -  q2x + q2y + q2~) 

-t-(q3x+q3y--q3~)--(q4xWq4y+q4z)] (la) 

Qz =(1/8 l/2)[(qlx + q l y ) -  (q2x + q2e) 

+ (q3x - q3y) - (q4x-  q4y)] (lb) 

Q3 =(1/4)[(2q,z- qlx + qly) + (2q2z + q2x-  qEy) 

- ( 2 q 3 z + q 3 x + q 3 y ) - ( 2 q 4 z - q 4 x - q 4 y ) ]  (lc) 

Q4=(1 /8m)[ (q ly -  qlz) + (q2r + q2z) 

- ( q 3 y - q 3 z ) - ( q 4 y  + q4z)] (ld) 

Q5 =(1/8'/z)[(qtx + q,=) + (qzx- q2:) 

- (q3x- q3z)-(q4x + q4z)] (le) 

Q6 = (1/81/2)[( _ ql~, + q ly) + (q2~ - q2y) 

+(q3~ + q3y) - (q4~ + q4y)] (lf) 

Q7=(1/2)(qlx + q2x + q3~ + q4~) (lg) 

Q8 =(1/2)(qly + q2y + q3y + q4y) (1 h) 

Qg=(1/2)(q,z + q2z + q3~ + q4z) (1i) 

Q lO =(1/8"2)[ _ (qly + qlz) - (q2y - q2z) 

+ (q3y + q3~) + (q4y-  q4~)] (l j )  

QI, =(1/8'/2)[(qlx - q,~) + (q2x + q2~) 

- (qax + q3~) - (q4x-  q4z)] (lk) 

Q~2=(1/8v2)[(ql~ + qly)- (q2x + q2y) 

- (q3x-  q3y) + (q4x - q4y)]. (l/) 

Therefore, we can get the values of Q,, substituting 
the values of q~x, qiy and qiz (i = 1, 2, 3 and 4) that 
correspond to x, y and z coordinates of O atoms 
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Fig. 1. Rietveld refinement pattern of the HRP data for HoNbO4. Q = 2~/d, where d is the interplanar spacing, and nyi=y,(o)-y,<c), 
where y,(o) is the observed intensity and y,(c) is the calculated intensity at a particular channel i. 
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Table 1. Structural parametersfor RNbO4 (R = La, Nd, Ho and Yb) at room temperature 

The R factors Rwp and Rp are defined for all the data points in a profile with and without a weight. R~ and Re are for the integrated Bragg intensity 
and the structure factor. R, is an expected R factor. Lattice parameters in the brackets were obtained by Aldred (1984). g is the occupation factor. 

(a) LaNbO,  (I2/a=I2/c), R~p=4.45, Rj,=3.42, R,=3.72, Rt=3.01, Re=1.63%; a=5.5647(1) ,  b=11.5194(2),  c = 5 . 2 0 1 5 ( I ) A ,  /3=94.100(I )  ° [ a =  
5.5667 (2), b =  11.5245 (4), c =  5.2020 (3) A,/3 =94.084 (2) °] 

Atom Site g x y z UII (A 2) U22 (/]t, 2) /.]33 (A 2) UI2 (A 2) UI3 (/]t, 2) U23 (A 2) Beq (A 2) 

La 4(e) I 0 0.6292 (I) 1/4 0.0052 (5) 0.0007 (5) 0.0058 (5) 0 0.0028 (4) 0 0.30 
Nb 4(e) 1 0 0.1036 (!) 1/4 0.0t)18 (6) 0.0024 (6) 0.0049 (7) 0 0.0005 (5) 0 0.24 
O(l) 8(./) 1 0.2376 (2) 0.0337 (1) 0.0546 (2) 0.0080 (6) 0.0042 (5) 0.0109 (7) 0.0007 (5) 0.0059 (5) 0.0011 (5) 0.60 
0(2) 8(D 1 0.1460 (2) 0.2042 (1) 0.4888 (2) 0.0063 (6) 0.0043 (5) 0.0066 (6) 0.0005 (5) -0.0008 (4) -0.0024 (5) 0.45 

(b) NdNbO4 (I2/a=12/c), Rwp=3.18, Rp=2.49, R,=3.32,  R,=2.50, Re = 1.42%; a=5.4669 (1), b =  11.2789 (2), c=5.1463 (1) A, f l=94.503 (1) ° [ a=  
5.4687 (3), b = 11.2811 (5), c = 5.1466 (3)/~,/3 = 94.528 (4) °] 

Atom Site g x y z UI 1 (/~k2) U2 2 (,~2) /_/3 3 (/~2) UI 2 (/~2) UI 3 (/~2) U2 3 (A2) Be q (/~2) 

Nd 4(e) 1 0 0.6296 (1) 1/4 0.0032 (3) 0.0037 (4) 0.0032 (3) 0 0.0015 (2) 0 0.26 
Nb 4(e) 1 0 0.1040 (1) 1/4 0.0024 (4) 0.0051 (4) 0.0037 (4) 0 0.0008 (3) 0 0.30 
O(1) 8(f) 1 0.2399 (2) 0.0327 (l) 0.0467 (2) 0.0068 (4) 0.0065 (4) 0.0077 (4) 0.0011 (3) 0.0035 (3) 0.0017 (3) 0.55 
0(2) 8(f) 1 0.1508 (2) 0.2065 (I) 0.4907 (2) 0.0053 (4) 0.0076 (4) 0.0056 (4) 0.0003 (3) -0.0009 (3) -0.0032 (3) 0.49 

(c) HoNbO4 (I2/a=12/c), R,p=3.06, R,=2.42,  Re=3.18, R~=2.71, R e = l . 1 9 % ;  a=5.2985(1) ,  
5.3030 (2), b =  10.9555 (3), c=  5.0742 (2),/3 =94.548 (3) °] 

b =  10.9465 (2), c=5.0719 (I) A, /3=94.531 (1) ° [ a =  

Atom Site g x y z UI, (A 2) U22 (A 2) U33 (A 2) U,2 (A 2) U~3 (A 2) /-/23 (A 2) B~q (A 2) 

Ho 4(e) I 0 0.6288 (1) 1/4 0.0030 (4) 0.0009 (3) 0.0033 (3) 0 0.0016 (2) 0 0.19 
Yb 4(e) 1 0 0.1061 (1) 1/4 0.12 (2) 
O(1) 8(]) 1 0.2458 (2) 0.0324 (1) 0.0415 (2) 0.0057 (4) 0.0038 (4) 0.0049 (4) 0.0010 (3) 0.0017 (3) 0.0005 (3) 0.38 
0(2) 8(f) 1 0.1566 (2) 0.2100 (1) 0.4971 (2) 0.0035 (4) 0.0039 (4) 0.0055 (4) 0.0005 (3) -0.0015 (3) -0.0018 (3) 0.34 

(d) YbNbO,  (I2/a=I2/c), Rwp=4.04, Rp=3.15, R,=3.18,  R,=3.25, Re=1.37%;  a=5 .2394( I ) ,  b=10.8344(2),  c=5 .0436(1)A,  /3=94.467(1) ° [ a =  
5.2429 (3), b =  10.843 (1), c =  5.0456 (3),/3 = 94.496 (7) °] 

Atom Site g x y z UI I (/~2) U2 2 (/Tk2) /.]3 3 (/~2) UI 2 (/~2) UI 3 (/~2) U2 3 (/]),2) Be q (/~2) 

Yb 4(e) 1 0 0.6286 (l) 1/4 0.0015 (5) 0.0015 (4) 0.0031 (5) 0 0.0016 (4) 0 0.16 
Nb 4(e) 1 0 0.1067 (2) 1/4 0.0013 (8) 0.0028 (8) 0.0011 (8) 0 0.0004 (6) 0 0.13 
O(1) 8(f) 1 0.2473 (4) 0.0321 (2) 0.0401 (3) 0.0051 (6) 0.0041 (7) 0.0071 (8) 0.0016 (6) 0.0037 (6) 0.0015 (5) 0.42 
0(2) 8(f) 1 0.1583 (3) 0.2106 (2) 0.4997 (3) 0.0032 (6) 0.0036 (7) 0.0054 (7) 0.0007 (5) -0.0002 (5) -0.0022 (5) 0.32 

O(3), O(1), 0(4)  and 0(2)  into (la) to (1/), where 
it is noted that the position of  the Nb atom is taken 
as the origin and the coordinate system is not oblique 
but orthogonal, different from those in Table 1. We 
obtain: 

Qi,La = 3.6575 (2), Qi,Nd = 3.6714 (1) 
(2a) 

Oi,Ho = 3.6744 (2), Ol,vb = 3.6691 (3) 

Q2,La = -0.0950 (2), O2,Nd = -0.1111 (1) 
(2b) 

Q2.Ho = -0.1322 (2), Q2,vb = -0.1429 (3) 

Q3.L,= --0.2215 (2), Q3,Nd = --0.2391 (1) 
(2C) 

Q3,Ho= --0.2658 (2), Q3,Vb = --0.2767 (3) 

Q 4 = 0  ( 2 d )  

Qs=0 (2e) 

Q6,La  = - - 0 . 3 1 5 5  ( 2 ) ,  Q6 ,Nd  = - - 0 . 3 3 5 6  ( 1 )  
(2f)  

Q6,Ho = -0.3254 (2), Q6,Yb = -0.3163 (3) 

Q7=0 (2g) 

Table 2. Bond lengths and angles of  RNbO4 (R = La, 
Nd, Ho and Yb), where the angles O(2)-Nb-O(3) and 
O(3)-Nb-O(4) are equal to O(1)-Nb-O(4) and O(1)- 
Nb-O(2), respectively, owing to twofold symmetry of 

the NbO4 tetrahedron 

T h e  n o t a t i o n  O ( l ) - N b - O ( 3 )  etc. is t a k e n  f r o m  T s u n e k a w a  & Take i  
(1978). 

A - B - C  A - B  ( A )  B - C  (A) A - B - C  (°) 

LaNbO4 O ( l ) - N b - O ( 3 )  1.903 (1) 1.903 (1) 129.9 (1) 
O(2) -Nb-O(4)  1.844 (1) 1.844 (1) 102.2 (1) 
O ( l ) - N b - O ( 4 )  1.903 (1) 1.844 (1) 109.65 (6) 
O ( l ) - N b - O ( 2 )  1.903 (1) 1.844 (1) 101.28 (6) 

NdNbO4 O ( l ) - N b - O ( 3 )  1.918 (1) 1.918 (1) 130.36 (7) 
O(2) -Nb-O(4)  1.842 (1) 1.842 (1) 102.22 (7) 
O(1) -Nb-O(4)  1.918 (1) !.842 (1) 109.96 (7) 
O ( l ) - N b - O ( 2 )  1.918 (1) 1.842 (1). 100.71 (4) 

HoNbO4 O ( l ) - N b - O ( 3 )  1.919 (1) 1.919 (1) 130.31 (8) 
O(2) -Nb-O(4)  1.841 (1) 1.841 (1) 103.65 (8) 
O(1) -Nb-O(4)  1.919 (1) 1.841 (1) 110.23 (4) 
O ( l ) - N b - O ( 2 )  1.919 (1) 1.841 (1) 99.99 (4) 

YbNbO4 O ( l ) - N b - O ( 3 )  1.915 (2) 1.915 (2) 130.1 (1) 
O(2) -Nb-O(4)  1.838 (2) 1.838 (2) 104.5 (I)  
O(1) -Nb-O(4)  1.915 (2) 1.838 (2) 110.42 (8) 
O(I  ) -Nb-O(2)  1.915 (2) 1.838 (2) 99.67 (7) 
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Q s = 0  (2h) 

Q9,L~ = -0 .3524  (2), Q9.Nd = --0.3519 (2) 
(2i) 

Q9,Ho = -0 .3316  (2), Q9,Yb = -0 .3175  (3) 

Q , 0 = o  (2j) 

Q11 = 0  (2k) 

Q12.La = 0.6336 (2), QIZ.Nd =0.6070 (1) 
(2/) 

Q~z,no= 0.6016 (2), Q~z.yb= 0.5986 (3) 

where Qn,La is the displacement, in A, of nth normal 
mode for LaNbO4 crystals, and so on. 

The displacement Q~ produces a regular tetrahe- 
dron of NbO4. Four sets of orthogonal coordinates, 
q°x, qi ° and qi ° (i = 1, 2, 3 and 4), brought about by 

only one mode of Q~, are estimated using an inverse 
transformation matrix: 

q°x=Ql/(12)'/2 , q °y=-Q, / (12 )  ~/2 and 
(3a) 

q°z= Q,/(12)'/2; 

qOx= _Q1/(12),/2, qOy = Q1/(12),/2 

q°z=Q,/(12)'/2; 

and 
(3b) 

q°:,=Q~/(12) '/2, q°y=Q,/(12) '/2 and 
(3c) 

q°z= -Q1/(12)'/2; 

q°x=-Ql/(12)]/2 , q °y=-Qi / (12 )  ~/2 and 
(3d) 

q°z= -Q, / (12)  1/2. 

Z Z ¸ 

l z Q1 Qz Qa 

X X X 
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Fig. 2. Twelve normal modes for a distorted N b O  4 tetrahedron: one mode of (a) cubic, (b) orthorhombic and (c) tetragonal symmetries; (d) 
to (f) three modes of monoclinic symmetry; (g) to (i) three translational modes; and (j) to (/) three rotational modes. The displacements 
of these modes, Q,, are shown by solid arrows. Open circles are O atoms and filled circles are Nb atoms. 
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These four sets correspond to the positions of four 
O atoms in the regular tetrahedron. Thus, the virtual 
bond length of Nb-O,  g0, is given by 

Co= {[Q1/(12)'/2] 2 +[-Q,/(12) ' /2] 2 

+ [Qi/(12)l/=]z}l/z = Q1/2. (4) 

The mean value of Q~ is 3.668 A, from (2a), and so 
the average value of g0 is 1.834/~. This value is nearly 
equal to the mean bond length R =  1.828 ]~ for s 
(=  valence of Nb/coordination number of Nb) = 5/4, 
where s was called the electrostatic bond strength by 
P_auling (1929) and the bond valence bit Brown (1978), 
R = R o - O . 3 7 1 n S  and R 0 = I . 9 1 1 A  (Brown & 
Altermatt, 1985). 

We can estimate a rate of displacement for each 
normal mode (a kind of distortion) by the following 
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Fig. 3. Relation between the ionic radius of the rare-earth element 
(Shannon, 1976) and both the rate of displacement of each mode, 
e,, and V '/3, where n=  1 (Q), n = 2  (x) ,  n=3  (+) ,  n = 6  (O), 
n = 9  (&), n=  12 (I--1) and V is the unit-cell volume (A). 

equation: 

e, = Q J V  m (5) 

where V = abe sin fl is the monoclinic unit-cell 
volume of RNbO4 and n = 1, 2, 3, 6, 9 and 12. Sub- 
stituting each displacement value into (5), we get the 
results as shown in Fig. 3. It is noted that the rate of 
QI displacement, el, increases with decreasing ionic 
radius of VlUR3+. On the other hand, the rates of 
displacement of other symmetry modes slightly 
decrease or are almost constant with decreasing ionic 
radius. The variations in the rates of these displace- 
ments towards lower temperatures for pseudoelas- 
ticity are considered to be important. 

5. Concluding remarks 

Our results are summarized as follows: 
(1) Precise crystal data for R N b O 4  ( R  = La, Nd, 

Ho and Yb) at room temperature were obtained by 
the high-resolution TOF neutron powder diffraction 
method. 

(2) It was shown with the normal-coordinate 
method that the virtual bond length of the regular 
tetrahedron NbO4 in RNbO4 crystals is 1.834A on 
average, which is nearly equal to the mean bond 
length for an ideal bond valence of s = 5/4. 

(3) The rate of displacement of each normal mode 
to cube root of the unit-cell volume was estimated. 
The relations between those rates and the ionic radii 
of rare-earth elements were obtained at room 
temperature. 

. <  
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Abstract 

Multiple Bragg diffraction effects have been observed 
in an A1-Cu-Fe quasicrystal. The experimental data 
are analyzed by means of a multibeam perturbation 
theory. Good fits are obtained between experimental 
and calculated profiles. The feasibility for phase 
determination of structure factors is demonstrated. 
It is found that there is no inversion symmetry in 
A1-Cu-Fe. 

I. Introduction 

It has been shown recently that multiple Bragg scatter- 
ing can be used for phase determination of X-ray 
structure factors (Shen & Colella, 1987). The general 
idea is to monitor the intensity of a weak reflection 
as the crystal is rotated around the scattering vector. 
When a strong reflection is excited simultaneously, 
the diffracted intensity exhibits a peak as a function 
of ~, the azimuthal angle of rotation, with asymmetric 
side bands. It has been pointed out (Chapman, Yoder 
& Colella, 1981) that phase information can be 
obtained from the asymmetric side bands using 
n-beam dynamical theory, even when dealing with 
mosaic crystals of general shape (Shen & Colella, 
1987). 

A general review of multibeam literature was pub- 
lished a few years ago (Chang, 1987) and recently 
phase effects have been observed in protein crystals 
(Hiimmer, Schwegle & Weckert, 1991; Chang, King, 
Huang & Gao, 1991). 

In this paper we report the observation of multiple- 
diffraction (Renninger) effects in a quasicrystal. Since 
a quasicrystal does not possess long-range periodicity 
in the usual sense, it is not clear that all diffraction 
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features present in ordinary crystals should be visible 
in quasicrystals. However, we know that strong and 
sharp Bragg diffraction spots are produced by quasi- 
crystals. We also know how to predict the positions 
of nodes in reciprocal space.* A necessary condition 
for the existence of the Renninger effect is that the 
difference between the Miller indices of two Bragg 
reflections must also correspond to a Bragg reflection. 
Since the xyz coordinates of every node in reciprocal 
space are expressed by means of a linear combination 
of six Miller indices, the necessary condition men- 
tioned above is certainly satisfied in a quasicrystal. 

2. Experimental 

Since multiple-beam effects are more visible for weak 
reflections, we decided to concentrate on the reflec- 
tion 240442 = P, which was chosen on the basis of 
a precession photograph taken perpendicularly to the 
fivefold axis. Bragg nodes in reciprocal space are 
referred to three orthogonal x, y, z axes, coinciding 
with the three twofold axes of the icosahedron. The 
x, y, z coordinates of a reciprocal-lattice vector, whose 
Miller indices are nl,  n2, n3, n4, ns, n6, are given in 
this paper by 

where 

6 
' (1) GII = K  ~ niell, 

i=l  

K = 1/[27ra(1 + ¢2)1/2], 
(1 + 51/2) 

~ -  - -  (2) 
2 ' 

* In this work we label Bragg spots with the sixfold Miller indices 
notation due to Elser (1986). 
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